Computational Geometry

Robin Visser

Terminology

- Point
- Line
- Line segment
- Ray

Line - Line Intersection

- Given two lines, calculate their intersection.

$$
\begin{aligned}
& y=a x+c \quad y=b x+d \\
& P\left(\frac{d-c}{a-b} ; a \frac{d-c}{a-b}+c\right)
\end{aligned}
$$

- Can do a similar thing for line segments; must just check whether intersection lies within the range of segment.

CCW Function

- Determine whether a given set of three ordered points go counter-clockwise or clockwise.

Use this:

$$
\begin{aligned}
& \left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right) \\
& \quad-\left(y_{2}-y_{1}\right)\left(x_{3}-x_{1}\right)
\end{aligned}
$$

If 0 , then collinear
If positive, then "left turn"
If negative, then "right turn"

Convex Hull

- Jarvis March ("Gift Wrapping" algorithm)
- Runs in $\mathrm{O}(\mathrm{nh})$ (Worst case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$)
- Graham Scan
- Runs in $O(n \log n)$

Jarvis March

- Pick a point on convex hull.
- Loop through all points and find the one that forms the minimum sized anticlockwise angle off the horizontal axis from the previous point.
- Continue until you encounter the first point.

Graham Scan

- Pick a point on convex hull.
- Sort all other points angularly around this point.
- Add the first two points to the hull.
- For every next point, check if that point, along with the preceding two, form a "right turn" or a "left turn".
- If "right turn", remove second last point, if"left turn", move on to next point.
- Continue until you encounter the first point.

Graham Scan

Point in Polygon

- Extend point in random direction (forming a ray)
- Find number intersections with polygon.
- If even \rightarrow outside
- If odd \rightarrow inside

Point in Polygon

- Extend point in random direction (forming a ray)
- Find number intersections with polygon.
- If even \rightarrow outside
- If odd \rightarrow inside

Point in Polygon

- Extend point in random direction (forming a ray)
- Find number intersections with polygon.
- If even \rightarrow outside
- If odd \rightarrow inside

Area of Polygon

- Formula for the area of a polygon given n vertices in order:

$$
A=\frac{1}{2} \sum_{i=0}^{n-1}\left(x_{i} \cdot y_{i+1}-x_{i+1} \cdot y_{i}\right)
$$

Questions?

